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A biharmonic boundary integral equation method (BBIE) is used to solve a two- 
dimensional contained viscous flow problem. In order to achieve a greater accuracy than is 
usually possible in this type of method, analytic expressions are used for the piecewise 
integration of all of the kernel functions rather than the more time-consuming method of 
Gaussian quadrature. Because the boundary conditions for the problem under 
consideration-commonly referred to as the “stickkslip” problem-give rise to a singularity 
in the solution domain for the biharmonic stream function, we find that the rate of 
convergence of the solution is poor in the neighbourhood of the singularity. Hence a modified 
BBIE (MBBIE) method is presented which takes into account the analytic nature of the 
aforementioned singularity. This modification is seen to produce rapid convergence of the 
results everywhere. The BBIE and MBBIE also provide information concerning the pressure 
and velocity fields of the flow and these properties are in excellent agreement with the 
analytical results of Watson. 

1. INTRODUCTION 

In recent years the use of integral equations in the numerical solution of elliptic 
boundary value problems (BVP) has gained in popularity [l-4]. The boundary 
integral equation method (BIE) has the big advantage over finite difference (FD) and 
finite element (FE) methods of superior convergence and greatly reduced 
requirements in computer storage and programming ]5 ]. 

Integral equation methods have been employed previously in viscous flow 
problems. In a series of papers, Youngren, Acrivos, and Rallison [6-91 solved for the 
deformation of a fluid drop under various flow conditions. The Stokes equations were 
solved in terms of velocities and Stokeslets on the drop surface. Mir-Mohamed- 
Sadegh and Rajagopal [lo] solved the biharmonic equation for the stream function 
over projections and depressions in a channel, although their approach differed to the 
present formulation, which has the advantage of automatically providing the fluid 
vorticity. Black et al. [ 111 described an integral equation method for the solution of 
the biharmonic equation for the case when the gradient of the stream function is 
known on the boundary. 
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In this paper, we investigate the stream function IJ for slow two-dimensional steady 
viscous flow which satisfies the biharmonic equation 

v4y/=o. (1) 

Coleman [ 121 solves this equation using a contour integral formulation (which uses 
Chebyshev quadrature for the integration of the kernel functions) but reveals that 
there are limitations to the BVPs to which his method can be applied. However, his 
formulation easily accommodates problems with boundary conditions on normal 
stresses. The BBIE formulation presented here may be applied to any linear BVP no 
matter how complex the boundary geometry may be. To demonstrate the 
applicability of this method we shall examine the flow in a simple geometry. The 
problem under consideration is commonly referred to as the “stick-slip” problem and 
contains a sudden discontinuity in boundary conditions which has the effect of 
introducing a mathematical singularity into the solution domain. This problem has 
received much attention [ 12-141 and we shall present a comparison of results from 
which we conclude that there is excellent agreement between the results obtained 
using the MBBIE and those obtained from the Wiener-Hopf technique employed by 
Watson [ 131. Motz [ 151, Symm [ 161, and several other authors have investigated 
mathematically the effects of singularities in elliptic equations and their methods have 
been employed to solve physical problems in the fields of electrostatics [ 171 and heat 
transfer [ 181. The effect of singularities in biharmonic problems has been investigated 
analytically by Richardson [ 141, and Xanthis et al. [ 191 have considered the singular 
nature of cracks in fracture mechanics problems using integral equation methods. 
When singularities arise in viscous flow problems many numerical investigations 
completely ignore their effects or assume that they affect only the flow in the 
immediate neighbourhood [ 12, 20,211. The inevitable result of such neglect is to 
introduce errors into the solution near the singularity. In order to improve the 
accuracy in this region, we include the analytic form of the singularity in the BBIE, 
having derived it in the manner described by Michael 1221. 

The results indicate that the effect of the singularity is most influential on the 
convergence of the solution in its immediate vicinity and that neglecting the singular 
behaviour produces results whose accuracy must be treated with caution. 

2. BBIE FORMULATION 

In order to solve the biharmonic equation for the stream function w in a domain D 
enclosed by a boundary LY2, we define a function 4 by splitting the biharmonic 
equation into its coupled form [23]. 

where 4 is the fluid vorticity. 

VzV=@, (2) 

v’qd = 0, (3) 



A BIE FOR SINGULAR SLOW FLOW PROBLEMS 141 

We can solve Eqs. (2) and (3) given the equivalent of two boundary conditions at 
each point of 80. Invoking Green’s Theorem in the plane of Eqs. (2) and (3) and 
employing arguments analogous to those presented by Fairweather et al. [23] give the 
following expressions at the general field point p: 

+ t 1 {4(q) G’b, 9) - 4’(q) G(p, 9) 1 dw(q), 
aR 

V(P) (d(P) =i,, WI) log’ I P - 41 -f(4) 1% I P - 411 d4qh 

(4) 

(5) 

where 

(0 
(ii) 

(iii) 

04 
L32 at q. 

(VI 

h(q) denotes the differential increment of 80 at q. 

G(p,q)=lp-ql*lloglp-ql- 11. 
The prime refers to differentiation with respect to the outward normal to 

q(p) is defined by 

V(P) = 0 ifp@L!+X!, 

= internal angle included between the tangents to 
80 on either side of p if p E Xl, 

= 2~ if p E R. 

In practice the integrals in Eqs. (4) and (5) can rarely be solved analytically, thus 
some form of numerical approximation is necessary. Following Jaswon and Symm 
[2] we divide LX2 into N smooth straight-line segments aslj, j = l,..., N, containing 
boundary nodes qj, j= l,..., N. Over each interval &!j we approximate w, v/‘, 4, and 
4’ in Eqs. (4) and (5) by piecewise-constant functions vj, #, $j, and @j, j= l,..., N. 
Applying the corresponding discretized forms of Eqs. (4) and (5) at the midpoint 
p = qi, i = l,..., N, of each interval gives 

‘li’(/(qi)= t [~j~~lli10g'14i-41dw0 
j=l 

- V; ian, log I qi - 41 do(q) + :#I Jani G’(qi, 4) do(q) 
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loiS’ I9i - 9 I dw(q) - 4,; ?;nj log I4i - 4 I dw(q) 
I 

where now qi E XJ and q E aJ2. Thus introducing 

A,= ’ 
! lo&T’ 19i-41 dw(d- Vj6jj3 

4au, 

B,=-’ 
! 

log I4i - 4 I dw(q), 
qEaf2! 

(7) 

(8) 

(9) 

(10) 

(11) 

where 6, is the Kronecker delta, enables Eqs. (6) and (7) to reduce to the coupled 
system of vector equations 

Ay.f+Byd+C#+D+‘=O, (12) 

A4+B+‘=O, (13) 

where, for example, 

(A)i,j = A,, (14) 

w = (w, ,a..> vi/NIT. (15) 

Previous authors [24,25] evaluate the coefficients C, and D, in expressions (10) and 
(11) using Gaussian quadrature. Unfortunately this inevitably introduces errors and 
is very time consuming. In this paper, these coefficients will be evaluated analytically. 

Consider the general field point p in domain R surrounded by boundary aQ. Let 
qaj and qbj be points on 3.0 marking the endpoints of boundary segment &Qj. Then if 

a = I P - 4,jI? 

b = I P - qb,jIT 
h = lqqj - qbjlr (16) 

P = i qbjqqj P, 

c= LqujPqbj, 

we have the geometry as shown in Fig. 1. Notice here that if p lies in the immediate 
neighbourhood of aRj, but not on &2,, then the use of the Gaussian quadrature on 
expressions (8)-( 11) will become computationally expensive, since the integral 
kernels will become logarithmically singular. 
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FIG. 1. Notation for analytic evaluation of integrals on straightline segment iiR,. 

Using the notation of relations (16) we have the following analytic expression for 
the integrals in Eqs. (8)--( 11): 

I log’lp-q/do=r, 
anj 

(17) 

I 
14P-qld~ 

an, 

=a(loga-logb)cos/3thlogb-htaCsinB=Z,say, (18) 

I 
{~~-q~*10g~p--q~-~p--q~*}‘dw=a(21-h)sin~, (19) 

anj 

i ~IP-412~~~lP-~l-lP-~12~~~ aRj 

+ (a sin @‘{I - ih - $2[ sin /I}. (20) 

Thus a source of error inherent in previously presented BBIEs has been removed by 
the introduction of expressions (19) and (20). Expressions (17)-(20) provide us with 
all the matrix coefficients in Eqs. (12) and (13), and since the problem is biharmonic 
we need the equivalent of two boundary conditions on each boundary segment XL!,. 
In the problem currently considered any two of vj, vj, #j and 4; are known for each 
j= 1 ,..., N and we can therefore insert this known information into Eqs. (12) and 
(13). Having done this we may solve the system of coupled equations by employing a 
direct matrix inversion scheme to solve for the two unknown boundary conditions on 
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each aQjn,, j = l,..., N. Note that we can solve for unknown boundary conditions on 
segment aQj when a linear combination of vj, vi, d,i, and 4,; is known; we do not 
necessarily require explicit boundary conditions. The inversion scheme used was a 
Gaussian elemination double precision scheme, which was considered preferable to a 
Gauss-Seidel or S.O.R. scheme because the matrices generated were very dense, and 
hence not suitable for iterative methods. At this stage the values of vj, I,v;, pi, and @; 
are known for each j = I,..., N. A discretized form of Eqs. (4) and (5) provides w and 
4 at a general field point p E L? + aR, i.e., the stream function and vorticity are 
generated simultaneously using this formulation. 

In the present work the BBIE is modified to incorporate the analytic nature of a 
singularity which arises in the solution domain, We investigate what is commonly 
referred to as the “stick-slip” problem which has been studied analytically by 
Richardson [ 141 and Watson [ 131, and numerically by Coleman ] 121. 

We solve for the biharmonic stream function w which satisfies 

my=0 (21) 

in the infinite strip -1 < y < + 1. The x and y velocity components for this flow are 
defined by 

ali/ aw 
u=F’ u=-p (22) 

respectively. 
Hence the “stick-slip” boundary conditions for the problem are 

y= *l, w, = 0 on y=fl inx<O. Pa) 

y= *l, ‘i/y?; = 0 vny = f 1 in x > 0. (23b) 

All remaining boundary conditions on w come from the imposition of a parabolic 
velocity profile as x+ -co and a slug-flow profile as x + +co. Since v --t 0 as 
x + &co, then Eq. (22) allows us to evaluate the corresponding conditions on v/ as 
x + fco. Employing a symmetry argument, we need only solve for I+Y in the upper 
half of the channel 0 < y < I. The velocity profile conditions should, in theory, be 
applied an infinite distance both upstream and downstream. In practice they were 
applied at x = *X for various values of X. A value of X = 3 was found to be 
sufficiently large; taking X > 3 caused no appreciable change in the results presented. 
This gives the boundary conditons on the region -3 < x < 3, 0 < J’ < 1 as follows: 

y= 1, w, = 0 any= 1,x(0, Pa) 

y= 1, Yy’ = 0 any= l,x>O, Pb 1 

y= 0, Y.vy = 0 on y = 0, (24~) 

Yx = 03 yy = ;( I - y’) on x = -3, Wd) 

VI, = 03 I//).= 1 onx=3. WeI 
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FIG. 2. Solution domain and boundary conditions for the “stick-slip” problem 

The values of vY on x = +3 are those which allow unit mass flow in unit time past 
the “inlet” and “outlet.” A pictorial representation of the specified problem is given in 
Fig. 2 and solution is now facilitated using the BBIE described above. 

Boundary discretizations comprising 70, 140, and 280 segments of equal length 
were used to check convergence of results in the solution domain Q + aJ2. 
Convergence was found to be very good except in the vicinity of the point (0, 1) 
which we subsequently refer to as S. The sudden discontinuity in boundary 
conditions at x = 0 on y = 1 gives rise to a mathematical singularity at S. We now 
incorporate the analytic nature of this singularity into the BBIE to produce a 
modified BBIE (MBBIE). 

It is well known that separated solutions of Eq. (21) in plane polar coordinates 
(I, 0) are of the form 

(25) 

where L is a real or complex constant called the exponent of the solution 1261, and 

&(O) = A cos B + B sin 8 + C8 cos 0 + D6’ sin 8, Wa) 

f,(e) = A cos 28 + B sin 28 + ce + D, Wb) 
fA(e) = A COS(~ + 1)8 + B sin(1 + 1)0 + C COS(~ - l)e + D sin@ - 1)tY. (26~) 

If we take polar coordinates centred on S as indicated in Fig. 3, then the constants 
A, B, C, and D in Eqs. (26) are determined from the four boundary conditions given 
in Eqs. (24a) and (24b) on 0 = 0 and 0 = rc, respectively. It should be noted that the 
analytic form of the singularity is very much dependent on the local geometry of the 

h , h’ unknown ‘X!, h’ unknown 

A%+1 bQs b%1 bns-2 

e s 
I Y=l 

r 

i__ 
P 

FIG. 3. Boundary discretization and polar coordinates employed near singularity at S. 
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solution domain. In cases where are no-slip conditions on the boundary of a flow-in- 
a-corner which encloses an angle of less than 146.3 degrees [ 27 1, the exponents in Eq. 
(25) are all complex. In such cases there is the further complication of first finding 
these exponents numerically and then extracting only the real part of the solution. 

Solutions of Eq. (21) for the present problem are found in the form of Eqs. (25) 
and (26~). (Solutions dependent on Eqs. (26a) and (26b) arise only when the flow is 
generated by “moving-boundary” conditions.) The boundary conditions (24a) and 
(24b) imply that 

j-A(O) = g (0) = fA(7r) = ;; 7 (n) = 0. 

Insertion of conditions (27) into Eq. (26~) gives two possible sets of solutions 

j-l(e) = a,(cos(~ + 1>e - cos(L - 1)8}, 1 = 4, + , ; ,..., WI 

or 

fl(0) = b,l((A - 1) sin(A + l)e - (A + 1) sin@ - 1)8), A = 2, 3, 4 ,,,,. (29) 

where a, and b,l are arbitrary constants. 
Since li/ = 1 at point S, then using the linearity of the problem we have 

where now the constants A, B, C, and D of Eqs. (26) are absorbed into the constants 
Pk and we therefore need to solve for these values of Pk. Note that in Eq. (30) the 1,‘s 
satisfy Re(A,+ ,) > Re(k,) and Re(A,) > 0. Let M be such that Re(A,,,) < 3 but 
Re(A,W+ ,) > 3. Defining functions g and x by 

(31) 

w=x+ g, (32) 

implies that x is a biharmonic function containing no singularities up to fourth 
derivatives. Moreover, Eqs. (3 1) and (32) imply that x + 0 and that x’, V’x. and V’x’ 
are bounded as r + 0. 

Define the function h by 

where, from Eq. (32), 

V2x = h, 

h=+V’g. 

(33) 
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Then, from Eq. (33) 

V2h = 0, (34) 

because x is biharmonic. 
So we have replaced the system of Eqs. (2) and (3) by Eqs. (33) and (34) for the 

biharmonic function x whose derivatives remain bounded everywhere up to fourth 
order. Using arguments analogous to those already presented we have the system 

AX+BX’+Ch+Dh’=O, (35) 

Ah+Bh’=O, (36) 

where now 
x=w-& (374 

x' zz I$: g', (37b) 

h = 4, - V2g, (37c) 

h’ = 4’ - V2g’, (374 

where, for example, 
‘\ 

g = (g,,..., g,Y = (g(r, 3 ~lL g(r,v9 &>>T3 (38) 

and (ri, ei) are the polar coordinates of boundary node qi, i= l,..., N. Using 
Eqs. (28), (29), and (31), the analytic form of g(r, 0) in this problem is given by 

g(r, l9) = 1 + p, r3’2 
( 
cosy-cos-fj +f12r5" (cosT--cos$j 

+/3,r3(sin 39 - 3 sin 19+ /34r7'2 
( 

cos T- COST 
1 

, 

hence we can evaluate analytically gj, V2gi, Bg,/&, and agi,Jay for each i = l,..., N. 
Since we know any two of vi, w;, #i and #( on each boundary segment aQi, then 
Eqs. (37) provide us with any two of xi, xi’, hi and hj on each segment aQi. Recalling 
that these “known” boundary conditions are in terms of /I,, fi,, fi2 and /I,, we have 
2N+ 4 unknowns and only 2N equations from Eqs. (33) and (34). 

Let us now look at the region near S, see Fig. 3, in more detail. If S is the common 
endpoint of boundary segments aQ, and aQ, _ , , then on an,- z and aR, ~, we have x 
and h prescribed, whereas on %2, and aQ,+ , , 2 and x’ are prescribed. It has already 
been postulated that x + 0 as r--t 0, i.e., that v may be represented accurately by g 
near S. Differentiating repeatedly we now postulate the $’ may be accurately 
represented by V’g’ near S. Then Eq. (37d) implies that h’ - 0 near S. In order to 
reduce our number of unknowns to 2N, we specify 

h:e2 = h:_, = h,; = hj,, = 0. (40) 
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We now proceed to solve Eqs. (35) and (36) subject to Eqs. (37) and (39) with 
conditions (40) in precisely the same way as outlined for the solution of Eqs. (12) 
and (13). At this point we know p, ,pZ, p3 and fi, and hence use Eq. (39) to evaluate 
gp at any field point p(r, 0) E R + BR. The boundary information x, x’, h, and h’ is 
also known and using discretized relations analogous to Eqs. (4) and (5) we evaluate 
x,, and h, at that same point p. Then the MBBIE gives 

vp=xp + S,? q$,=hpfV2gp. 

for the stream function and vorticity at p. 

3. RESULTS 

Evaluating the kernel integrals analytically rather than by Gaussian quadrature 
resulted in computer time savings of up to 38%. 

Table I shows the stream function generated by the BBIE in the region -3 < x < 3, 
0 < y < 1 for eighty-one equally spaced field points in the solution domain. At each 
point, results are shown for discretizations of 70, 140, and 280 uniformly spaced 
boundary nodes. Note that results converge rapidly everywhere except near S (this 
includes the entire central column of figures). The errors at the corners of the solution 
domain are a direct result of the Maximum Principle [2] and are inherent in the BIE 
solution of contained harmonic and biharmonic problems. Table II shows an 
equivalent distribution of results for the stream function generated by the MBBIE. 
This table illustrates the convergence of the solution throughout the entire domain. 
Thus the inclusion of the analytic form of the singularity S has appreciably improved 
the rate of convergence of the solution. 

To see the effect of the modification of the BBIE we expand the region near S and 
present in Tables III and IV results from the BBIE and MBBIE, respectively, in the 
region -0.1 <x < 0.1, 0.9 ,< y < 1.0. Table III displays the nature of the relatively 
poor BBIE convergence in this region. However, Table IV shows the excellent 
convergence properties of the MBBIE near S; with a discretization of only 70 nodes 
the solution is only .Ol% in error near S. Figure 4 shows the streamlines 
v = constant near the singularity in the regions covered by Tables III and IV. The 
streamlines are generated using the boundary information generated by the 280 node 
discretization, and show clearly the spurious effects of the BBIE near S; note in 
particular the erroneous v/ = 1 streamline from the BBIE. 

In Table IV we present the values of /3, ,..., /3, produced by different discretizations 
of the MBBIE. Because the nodes were uniformly distributed in each case--each 
boundary segment was of length h-and since the segment length was halved in each 
discretization, then Richardson’s extrapolation to the limit [28] was applied to the 
values of p, to give p,, say. Now p^, is given analytically by the Wiener-Hopf 
technique [ 131 as 

B, = + (;) “2 - 0.690988 . . . . 
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0.9990 
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0.9777 
0.9775 
0.9775 

0.9141 
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0.9141 
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0.8155 0.8158 
0.8154 0.8161 
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-0.0219 0.0011 0.0006 -0.0004 0.0008 -0.0003 0.0000 
-0.0119 0.0001 0.0002 0.0001 0.0001 0.0000 0.0000 
-0.0067 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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TABLE I 

Stream Function from BBIE in -3 < x < 3, 0 < y < 1 

0.6883 
0.6884 
0.6888 

1.0138 
1.0074 
1.0041 

0.8858 0.8765 0.8750 0.8744 
0.8866 0.8766 0.8750 0.8749 
0.8871 0.8767 0.8749 0.8750 

0.7697 0.7528 0.7501 0.7496 
0.7711 0.7530 0.7500 0.7500 
0.7720 0.7531 0.7499 0.7500 

0.6503 0.6286 0.6251 0.6256 
0.6522 0.6289 0.6251 0.6250 
0.6533 0.6290 0.6249 0.6250 

0.5270 0.5039 0.5002 0.5000 
0.5289 0.5042 0.5001 0.5000 
0.5301 0.5044 0.4999 0.5000 

0.3995 0.3786 0.3753 0.3753 
0.4013 0.3789 0.3752 0.3750 
0.4023 0.3790 0.3749 0.3750 

0.2686 0.2528 0.2503 0.2498 
0.2699 0.2530 0.2502 0.2500 
0.2706 0.2531 0.2499 0.2500 

0.1350 0.1265 0.1252 0.1244 
0.1357 0.1266 0.1251 0.1249 
0.1361 0.1267 0.1250 0.1250 

-I- 

149 

0.0000 -0.0126 
0.0000 -0.0062 
0.0000 -0.0027 

Nodes 

70 
140 
280 

and from Table V we have 

b, = 0.69 108. 

Hence the MBBIE gives the dominant coefficient in the singularity expansion to an 
accuracy of 0( lo-‘%). However, Richardson [ 141 obtains a value of 0.581 for j, . 
As is usual in these types of extrapolation, the smaller the value of k the faster the 
pk’s converge. This phenomenon is displayed in Table V. 

In the region near S, Eq. (39) gives 

ly - 1 - 2p, r312 sin f sin e - 2/I, rsi2 sin T sin e + O(r3). 
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TABLE II 

Stream Function from MBBIE in -3 < x < 3,0 < J < 1 

0.9945 1.0001 
0.9977 1.0000 
0.9988 1.0000 

0.9999 
1.0000 
1.0000 

1.0001 1.0036 1.0262 
1.0001 1.0000 1.0157 
1.0000 1.0000 1.0073 

0.8766 0.8739 0.8761 
0.8767 0.8744 0.8739 
0.8767 0.8745 0.8749 

0.7528 0.7478 
0.7531 0.7488 
0.7531 0.7491 

0.7446 
0.7499 
0.7500 

0.6285 0.6221 
0.6290 0.6235 
0.6291 0.6239 

0.6315 
0.6259 
0.6250 

0.5037 0.4969 
0.5043 0.4985 
0.5044 0.4988 

0.4998 
0.5000 
0.5000 

0.3783 0.3720 
0.3789 0.3736 
3.3791 0.3739 

0.3689 
0.3741 
0.3750 

3.2522 0.2474 
3.2530 0.2489 
3.2531 0.2492 

0.2548 
0.2500 
0.2500 

1.1259 
3.1265 
I.1267 

0.1220 
0.1243 
0.1245 

0.1218 
0.1260 
0.1250 

0.9999 
1.0000 
1.0000 

0.9776 
0.9775 
0.9774 

1.0001 
1.0000 
1.0000 

0.9555 
0.9555 
0.9555 

0.9993 
1.0000 
1.0000 

0.8876 
0.8877 
0.8877 

0.9775 0.9785 
0.9775 0.9781 
0.9775 0.9780 

0.9780 
0.9779 
0.9778 

0.9136 0.8717 
0.9134 0.8716 
0.9133 0.8716 

0.7730 
0.7731 
0.7731 

0.9136 0.9159 
0.9141 0.9152 
0.9141 0.9149 

0.8158 0.8179 
0.8155 0.8168 
0.8154 0.8166 

0.9150 
0.9146 
0.9145 

0.8166 0.8141 0.7618 
0.8161 0.8138 0.7617 
0.8160 0.8137 0.7617 

0.6545 
0.6547 
0.6547 

0.6874 0.6901 
0.6875 0.6890 
0.6875 0.6887 

0.6887 0.6854 0.6320 
0.6882 0.6851 0.6319 
0.6881 0.6850 0.6319 

0.5312 
0.5315 
0.5316 

0.5358 0.5386 
0.5360 0.5376 
0.5361 0.5372 

0.5372 0.5337 0.4868 
0.5367 0.5334 0.4868 
0.5366 0.5333 0.4868 

0.4032 
0.4036 
0.4036 

0.3675 0.3691 
0.3672 0.3683 
0.3672 0.3680 

0.3680 0.3651 
0.3676 0.3649 
0.3675 0.3648 

0.3306 
0.3306 
0.3306 

0.2710 
3.2715 
3.2716 

0.1850 
0.1865 
0.1865 

0.1873 
0.1871 
0.1870 

- 

0.1870 0.1855 
0.1868 0.1852 
0.1867 0.1852 

0.1669 
3.1671 
3.1671 

3.1362 
3.1365 
1.1366 

-0.0208 -0.0013 0.0002 0.0005 0.0001 0.0005 -0.0001 -0.0032 -0.0335 
-0.0065 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 -0.0180 
-0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0081 

Nodes 

l-x---- 
140 
280 

BBIE RESULTS 

------- MBBIE RESULTS 

1.00 

r 

-1.000 A 

.98 A 

-10 -08 -06 -04 -02 0 .02 .04 .06 ,08 .lO 

X- 

FIG. 4. A comparison of streamlines w = constant near the singularity. 
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TABLE III 

Stream Function from BBIE in -0.1 < x < 0.1. 0.9 < y < 1.0 
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1.0061 1.0032 
0.9975 1.0013 
1.0001 1.0001 

0.9971 0.9962 
0.9952 0.9945 
0.9950 0.9943 

0.9904 0.9892 
0.9895 0.9883 
0.9897 0.9886 

0.9837 0.9822 
0.9837 0.9821 
0.9844 0.9827 

0.9770 0.9752 
0.9778 0.9757 
0.9788 0.9767 

0.9701 0.9680 
0.9716 0.9692 
0.9730 0.9705 

0.9631 0.9607 
0.9653 0.9625 
0.9670 0.9641 

0.9560 0.9533 
0.9587 0.9556 
0.9607 0.9575 

0.9487 0.9457 
0.9518 0.9485 
0.9541 0.9506 

0.9949 0.9982 1.0039 1.0135 0.9984 1.0062 1.0075 
0.9980 0.9973 0.9980 1.0018 0.9994 1.0029 1.0013 
0.9999 0.9998 0.9992 0.9992 0.9998 1.0005 1.0006 

0.9940 0.9932 0.9929 0.9933 0.9953 0.9972 0.9976 
0.9984 0.9978 0.9970 0.9964 0.9966 0.9968 0.9961 
0.9995 0.9993 0.9989 0.9981 0.9975 0.9967 0.9958 

0.9922 0.9912 0.9905 0.9903 0.9910 0.9915 0.9913 
0.9970 0.9961 0.9950 0.9939 0.9931 0.9922 0.9909 
0.9983 0.9979 0.9971 0.9959 0.9944 0.9927 0.9911 

0.9897 0.9885 0.9874 0.9866 0.9863 0.9858 0.9850 
0.9948 0.9936 0.9922 0.9906 0.9890 0.9873 0.9855 
0.9962 0.9956 0.9944 0.9928 0.9907 0.9885 0.9863 

0.9866 0.9851 0.9836 0.9823 0.9812 0.9800 0.9786 
0.9919 0.9904 0.9887 0.9867 0.9845 0.9823 0.9800 
0.9935 0.9925 0.9911 0.9891 0.9866 0.9839 0.9812 

0.9829 0.9811 0.9793 0.9775 0.9758 0.9741 0.9722 
0.9883 0.9866 0.9845 0.9822 0.9796 0.9769 0.9742 
0.9901 0.9888 0.9870 0.9847 0.9819 0.9788 0.9758 

0.9786 0.9765 0.9744 0.9722 0.9701 0.9678 0.9655 
0.9841 0.9822 0.9799 0.9772 0.9743 0.9712 0.9682 
0.9860 0.9845 0.9824 0.9798 0.9768 0.9735 0.9701 

0.9738 0.9715 0.9690 0.9665 0.9640 0.9614 0.9587 
0.9794 0.9773 0.9747 0.9717 0.9686 0.9652 0.9619 
0.9815 0.9796 0.9773 0.9745 0.9712 0.9677 0.9641 

0.9685 0.9659 0.9632 0.9604 0.9576 0.9546 0.9516 
0.9742 0.9718 0.9690 0.9659 0.9625 0.9589 0.9553 
0.9764 0.9743 0.9717 0.9687 0.9652 0.9615 0.9578 

70 
140 
280 

Theninx>Oony=l, 

w&i”vI 
r ae r=x.o=rr 

= 2/3,.X1’ - 2/I,x”” + 0(x2), 

so that 

w ’ -p- = 2p, - 2/3,x + 0(x3’*). (41) 

Plotting $/x’12 vs x (where I,U’ is generated by the BBIE should therefore give a 
curve which coincides approximately with the straight line whose intercept and 
gradient are 2/3, and -2/3*, respectively, where p1 and & are generated by the 
MBBIE. Figure 5 shows the variation of @lx”* with x for both the BBIE and 
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FIG. 5. A comparison of boundary information in the region x > 0 on y = 1 with 70, 140, and 280 
nodes, respectively, (a)-(c). (---)w’/< f x rom BBIE, (-)2/?, - 2&x from MBBIE. 

TABLE IV 

Stream Function from MBBIE in -0.1 ( x < 0.1, 0.9 < J < 1.0 

1.0000 1.0001 1.0001 
1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 

1.0001 
1.0000 
1.0000 

1.0001 
1.0000 
1.0000 

0.9996 0.9996 0.9995 0.9993 0.9987 0.9973 0.9962 0.9954 
0.9996 0.9996 0.9995 0.9993 0.9986 0.9972 0.9962 0.9954 
0.9996 0.9996 0.9995 0.9993 0.9986 0.9972 0.9962 0.9954 

0.9975 0.9961 0.9941 0.9922 0.9907 0.9894 
0.9975 0.9961 0.9941 0.9922 0.9907 0.9894 
0.9975 0.9961 0.9940 0.9922 0.9907 0.9894 

0.9967 0.9963 0.9957 0.9947 0.9929 0.9904 0.9880 0.9858 0.9840 
0.9967 0.9963 0.9957 0.9947 0.9928 0.9904 0.9879 0.9858 0.9840 
0.9967 0.9963 0.9957 0.9947 0.9928 0.9904 0.9879 0.9858 0.9840 

0.9942 0.9936 0.9926 0.9912 0.9890 0.9862 0.9833 0.9807 0.9783 
0.9941 0.9935 0.9926 0.9911 0.9889 0.9861 0.9833 0.9807 0.9783 
0.9941 0.9935 0.9926 0.9911 0.9889 0.9861 0.9833 0.9807 0.9783 

0.9910 0.9901 0.9889 0.9870 0.9845 0.9815 
0.9910 0.9901 0.9888 0.9870 0.9845 0.9814 
I.9909 0.9901 0.9888 0.9870 0.9845 0.9814 

0.9783 
0.9783 
0.9782 

0.9725 
0.9725 
3.9725 

3.9872 0.9861 0.9845 
3.9872 0.9860 0.9844 
3.9871 0.9860 0.9844 

0.9824 
0.9823 
0.9823 

I 0.9796 
0.9795 
0.9795 

I 0.9763 0.9729 
0.9763 0.9728 
0.9763 0.9728 

0.9695 3.9664 
0.9695 3.9664 
0.9695 3.9664 

S 

, , 
0.9671 
0.9671 
0.9670 

0.9780 0.9763 0.9742 0.9716 0.9684 0.9648 0.9609 
0.9779 0.9762 0.9741 0.9715 0.9683 0.9647 0.9609 
0.9779 0.9762 0.9741 0.9715 0.9683 0.9647 0.9609 

0.9635 3.9601 
0.9635 I.9600 
0.9635 3.9600 

1.0000 
1.0000 
1.0000 

0.9947 
0.9947 
0.9947 

0.9571 0.9535 
0.9571 0.9534 
0.9571 0.9534 

Nodes 

70 
140 
280 
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TABLE V 

Variation of Singularity Expansion Coefficients for Different MBBIE Discretizations 

Nodes 

Boundary 
Segment 
Length, h P, 82 P, P, 

70 0.20 0.68701 0.29559 -0.09985 -0.05625 
140 0.10 0.69024 0.21106 -0.09 119 -0.03452 
280 0.05 0.6909 1 0.26952 -0.08629 -0.0 1725 

Extrapolation to the limit 0.69 108 0.26435 -0.07990 -to.04962 

MBBIE. Using the BBIE it is seen that @/x1” + co as x j 0’. This is because the 
values of V*v and V*w’ in the BBIE become unbounded as we approach S along 
y = 1 in x > 0, and the inaccuracies incurred in these values propagate into the 
solution for w and I# during the matrix inversion described earlier. However, for 
x > 0.1 on y = 1, the agreement predicted by Eq. (41) is seen to be good and 
moreover it improves as the boundary discretization is relined. 

From Eqs. (22) and (41) we have the x component of velocity on y = 1 given by 

aw 44 l)=ay y=, = I//’ = 2&X”’ + o(x3’2). 

Watson [ 131, using the Wiener-Hopf technique, obtained 

112 
- 1.382x”* asx-iO+, 

(42) 

(43) 

whereas the MBBIE, using the extrapolated value of /I, in expression (42), gives 

u(x, 1) - 2&x”’ - 1.382~“~ as x+0+. (44) 

However, Richardson’s [ 141 analytic methods produced the result 

u(x, 1) - 
3 

4w4)12 x 
112 - 1.162x”* as x-iO+. (45) 

Since the MBBIE and the analytic results of Watson [ 131 agree to an accuracy of 
order 10e2% it suggests that the Richardson [ 141 result is questionable. 

Evaluation of pc, the fluid pressure on the centreline y = 0, is readily accomplished 
by the BBIE using the boundary information already generated. From the equation 
for the dimensionless pressure 

vp = v2u, 
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ap,- 
ax 

- V2uI,=,. (46) 

Using the commutativity of operators in Cartesian coordinates, on y = 0 we have 

(47) 

where 4 is as defined in Eqs. (2) and (3). Since we know 4;) j = I,..., N, from the 
BBIE, then Eqs. (46) and (47) give 

which was integrated by the central difference scheme 

P,i+ 1 = Pj- 1 - 2h4; 3 (48) 

where h is as shown in Fig. 1 and pj z p(xj). Equation (48) should be integrated by 
applying the condition p + 0 as x + +co. In practice, it was integrated by applying 
p = 0 at x = +3. The pressure pc evaluated using (48) is plotted in Fig. 6, and this 
compares well with the centreline pressure derived by Richardson ] 141. From Fig. 6 
the pressure for large negative x behaves as 

PC --3x+p,, 

’ Non-dimensional 
pressure, pc 

(49) 

-1.2 -1.0 -08 -04 0 04 0.8 10 1.2 

x- 

FIG. 6. Pressure variation along the centreline y = 0. 
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where p0 is a constant. The entry length 1 is defined as the value of x where the 
straight line given by Eq. (49) cuts the x axis. If pN and 1, represent respectively the 
pressure in x ( 0 and entry length from the BBIE with N nodes, we find from 
numerical integration of Eq. (48) that 

p70 = -3.0154.x + 0.6215, (soa) 

P ,4,, = -3.0098x t 0.7274, (5Ob) 

P 28o = -3.0030x + 0.7858, (5Oc) 

which, on putting pN = 0 gives 

I,, = 0.206 1, 

I,,, = 0.24 17, 

l,,,, = 0.26 17. 

(5la) 

(5 lb) 

(5lc) 

Using Richardson’s Extrapolation to the limit, Eqs. (51) give 

i= lim 1, = 0.2873. 
N-cc 

Watson [ 131 finds that the entry length is given by 

1 m t sinh t + t2 - 4 cash t + 4 

’ = a - y j0 t(cosh t - l)(sinh t - t) dr’ 

Numerical calculation of this integral leads to the value 

I= 0.2865. 

Thus the entry length generated by the BBIE is in error from the value predicted by 
Watson 1131 by less than 1%. 

In order to compare our numerical results with those of Coleman [ 121 we first note 
that he employs the boundary conditions 

u = 1 - y2, v=o on x = -2, 
2 24 = 3, v=o onx=+2, 

thus his computations are carried out on a smaller solution domain than ours. In 
order to compare velocities between the methods used in this paper and Coleman’s 
112) we first scale up his velocities by a factor of t. Using an argument analogous to 
that employed in deriving Eq. (41) and recalling Eq. (32) we have 

u(xj, l) N 2xj’2 (PI -PZx,j + Phxj I + X,(> (52) 
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giving us the MBBIE x component of velocity at node xi on J’ = 1. The BBIE .Y 
component of velocity is given by 

24(X/, 1) = y;. (53) 

Table VI shows a comparison of values of u(x,~, 1) as obtained by Coleman I12 I. 
the BBIE, and the MBBIE using the same boundary discretization. Furthermore, the 
results presented in the MBBIE column are almost indistinguishable from the those 
which are obtained using four times as many nodes. It is seen that both Coleman 
[ 121 and the BBIE are over 20% in error near the singularity, but for x > 0.1 the 
Coleman [ 121 results and the BBIE differ from the MBBIE by less than 3%. 

TABLE VI 

Variation of u(x,, 1) for Three Different Methods 

10%(x,, 1) 

30x, Coleman ( 12 1 BBIE MBBIE 

1 2940 3751 2493 
3 4610 4636 4208 
5 5600 5654 5293 
I 6340 6382 6102 
9 6940 6970 6741 

11 1420 7452 7260 
13 7830 7853 7690 
15 8160 8188 8049 
17 8450 8472 8351 
19 8690 8711 8607 
21 8880 8914 8823 
23 9060 9087 9007 
25 9200 9234 9163 
27 9330 9359 9296 
29 9420 9465 9409 
31 95 10 9556 9505 
33 9590 9633 9587 
35 9640 9699 9659 
37 9700 9756 9718 
39 9750 9805 9770 
41 9790 9848 9815 
43 9820 9885 9854 
45 9840 9919 9889 
47 9870 9949 9920 
49 9890 9977 9949 
51 9900 10044 9971 
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4. CONCLUSIONS 

By using a coupled form of the biharmonic equation a direct BBIE method has 
been formulated. Employment of analytically evaluated integrals means that this 
BBIE is more efficient than previously formulated BBIEs in that program-execution 
time savings of up to 38% over numerical quadrature have been observed. The actual 
saving is dependent upon the size of the discretization and increases as the number of 
nodes increases. Furthermore, for each discretization the MBBIE program required 
approximately 5% more execution time than the corresponding BBIE program, so 
that the accuracy of the solution was noticeably improved without appreciably 
lengthening the method. 

Testing the method on the classical “stick-slip” problem has shown that the BBIE 
produces accurate results. The BBIE and MBBIE formulated here are stable for any 
linear boundary conditions and use but one Gaussian elimination matrix inversion for 
solution and so are computationally efficient. 

Here the analytic nature of the singularity has been incorporated into the MBBIE 
to avoid the problem of unbounded derivatives occurring in the solution domain. 
Results indicate substantial improvements in the accuracy of the solution near the 
singularity when the MBBIE is employed. 

This MBBIE can be applied to problems involving more complex geometries and 
boundary conditions, with the result that the forms of singularity encountered will be 
correspondingly more complex. In fact, it can be applied to any problem for which 
the analytic form of the singularity can be obtained. 
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